Deep-learning (DL) algorithms are becoming the standard for processing ultrasound (US) fetal images. Despite a large number of survey papers already present in this field, most of them are focusing on a broader area of medical-image analysis or not covering all fetal US DL applications. This paper surveys the most recent work in the field, with a total of 145 research papers published after 2017. Each paper is analyzed and commented on from both the methodology and application perspective. We categorized the papers in (i) fetal standard-plane detection, (ii) anatomical-structure analysis, and (iii) biometry parameter estimation. For each category, main limitations and open issues are presented. Summary tables are included to facilitate the comparison among the different approaches. Publicly-available datasets and performance metrics commonly used to assess algorithm performance are summarized, too. This paper ends with a critical summary of the current state of the art on DL algorithms for fetal US image analysis and a discussion on current challenges that have to be tackled by researchers working in the field to translate the research methodology into the actual clinical practice.
翻译:尽管在这一领域已经有大量的调查报告,但大多数都侧重于医学图像分析的更广泛领域,或者没有涵盖所有胎儿的美国DL应用程序。本文调查了该领域的最新工作,2017年后共出版了145份研究论文。每份文件都从方法和应用角度进行分析和评论。我们将这些论文分为:(一) 胎儿标准仪学探测,(二) 解剖结构分析,(三) 生物测量参数估计。对每一类别,都提出了主要限制和开放问题。汇总表包括了便利不同方法之间的比较。也概述了通常用于评估算法绩效的公开数据集和性能衡量标准。本文最后从方法和应用角度对美国Fetal图像分析的DL算法现状作了批判性总结,并讨论了实地研究人员为将研究方法转化为实际临床实践而必须应对的当前挑战。