Learning from positive and unlabeled (PU) data is an important problem in various applications. Most of the recent approaches for PU classification assume that the class-prior (the ratio of positive samples) in the training unlabeled dataset is identical to that of the test data, which does not hold in many practical cases. In addition, we usually do not know the class-priors of the training and test data, thus we have no clue on how to train a classifier without them. To address these problems, we propose a novel PU classification method based on density ratio estimation. A notable advantage of our proposed method is that it does not require the class-priors in the training phase; class-prior shift is incorporated only in the test phase. We theoretically justify our proposed method and experimentally demonstrate its effectiveness.


翻译:从正和无标签(PU)数据中学习,是各种应用中的一个重要问题。最近的PU分类方法大多认为,培训无标签数据集中的类优先(正样本比例)与测试数据相同,在许多实际情况下并不存在。此外,我们通常不了解培训和测试数据中的类优先,因此我们不知道如何培训没有培训和无标签(PU)数据的分类员。为了解决这些问题,我们提出了基于密度比率估计的新颖的类优先分类方法。我们拟议方法的一个显著优点是,它不需要在培训阶段的类优先;类优先的转换只是在测试阶段才被纳入其中。我们理论上证明我们提出的方法和实验性地证明它的有效性。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
53+阅读 · 2020年3月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年7月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
On Variance Estimation of Random Forests
Arxiv
0+阅读 · 2022年2月18日
On the evaluation of (meta-)solver approaches
Arxiv
0+阅读 · 2022年2月17日
Arxiv
0+阅读 · 2022年2月17日
VIP会员
相关VIP内容
专知会员服务
14+阅读 · 2021年5月21日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
53+阅读 · 2020年3月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年7月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员