Visibility problems have been investigated for a long time under different assumptions as they pose challenging combinatorial problems and are connected to robot navigation problems. The mutual-visibility problem in a graph $G$ of $n$ vertices asks to find the largest set of vertices $X\subseteq V(G)$, also called $\mu$-set, such that for any two vertices $u,v\in X$, there is a shortest $u,v$-path $P$ where all internal vertices of $P$ are not in $X$. This means that $u$ and $v$ are visible w.r.t. $X$. Variations of this problem are known as total, outer, and dual mutual-visibility problems, depending on the visibility property of vertices inside and/or outside $X$. The mutual-visibility problem and all its variations are known to be $\mathsf{NP}$-complete on graphs of diameter $4$. In this paper, we design a polynomial-time algorithm that finds a $\mu$-set with size $\Omega\left( \sqrt{n/ \overline{D}} \right)$, where $\overline D$ is the average distance between any two vertices of $G$. Moreover, we show inapproximability results for all visibility problems on graphs of diameter $2$ and strengthen the inapproximability ratios for graphs of diameter $3$ or larger. More precisely, for graphs of diameter at least $3$ and for every constant $\varepsilon > 0$, we show that mutual-visibility and dual mutual-visibility problems are not approximable within a factor of $n^{1/3-\varepsilon}$, while outer and total mutual-visibility problems are not approximable within a factor of $n^{1/2 - \varepsilon}$, unless $\mathsf{P}=\mathsf{NP}$. Furthermore we study the relationship between the mutual-visibility number and the general position number in which no three distinct vertices $u,v,w$ of $X$ belong to any shortest path of $G$.
翻译:暂无翻译