The recent statistical finite element method (statFEM) provides a coherent statistical framework to synthesise finite element models with observed data. Through embedding uncertainty inside of the governing equations, finite element solutions are updated to give a posterior distribution which quantifies all sources of uncertainty associated with the model. However to incorporate all sources of uncertainty, one must integrate over the uncertainty associated with the model parameters, the known forward problem of uncertainty quantification. In this paper, we make use of Langevin dynamics to solve the statFEM forward problem, studying the utility of the unadjusted Langevin algorithm (ULA), a Metropolis-free Markov chain Monte Carlo sampler, to build a sample-based characterisation of this otherwise intractable measure. Due to the structure of the statFEM problem, these methods are able to solve the forward problem without explicit full PDE solves, requiring only sparse matrix-vector products. ULA is also gradient-based, and hence provides a scalable approach up to high degrees-of-freedom. Leveraging the theory behind Langevin-based samplers, we provide theoretical guarantees on sampler performance, demonstrating convergence, for both the prior and posterior, in the Kullback-Leibler divergence, and, in Wasserstein-2, with further results on the effect of preconditioning. Numerical experiments are also provided, for both the prior and posterior, to demonstrate the efficacy of the sampler, with a Python package also included.
翻译:最近的统计限定要素方法(STATFEM)为综合使用观察到的数据的限定要素模型提供了一个连贯的统计框架。 通过在治理方程内嵌入不确定性, 更新了有限要素解决方案, 以给该模型中所有不确定性来源量化的后部分布提供基于样本的特性。 然而, 要纳入所有不确定性来源, 就必须整合与模型参数相关的不确定性, 已知的不确定性前期量化问题 。 在本文件中, 我们利用兰格文动态解决StafEM前方问题, 研究未调整的兰格文算法( ULA) (无Meopolis的马可夫连锁 Monte Carlo采样器) 的效用, 以建立这一否则会比较难的计量尺度。 由于StafEM问题的结构, 这些方法能够在没有明确的完整 PDE 解决方案的情况下解决前方问题 。 ULA还基于梯度, 提供了一种可伸缩的方法, 高达自由度。 将基于 Langevin 采样器的理论(ULA) (ULEFI) (ULE) (ULO) (M) (M) (ULO) (NO) (O) (M) (OILO) (O) (O) (OLO) (O) (O) (O) (O) (O) (O) (POL) (O) (O) (P) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O