Chi-squared tests for lack of fit are traditionally employed to find evidence against a hypothesized model, with the model accepted if the Karl Pearson statistic comparing observed and expected numbers of observations falling within cells is not significantly large. However, if one really wants evidence for goodness of fit, it is better to adopt an equivalence testing approach in which small values of the chi-squared statistic are evidence for the desired model. This method requires one to define what is meant by equivalence to the desired model, and guidelines are proposed. Then a simple extension of the classical normalizing transformation for the non-central chi-squared distribution places these values on a simple to interpret calibration scale for evidence. It is shown that the evidence can distinguish between normal and nearby models, as well between the Poisson and over-dispersed models. Applications to evaluation of random number generators and to uniformity of the digits of pi are included. Sample sizes required to obtain a desired expected evidence for goodness of fit are also provided.


翻译:如果Karl Pearson的统计比较观察到的和预计的细胞内观测数量并不大,则该模型被接受。然而,如果一个人真正想得到符合要求的证据,则最好采用一种等效测试方法,将奇夸统计的微小值作为理想模型的证据。这种方法需要一种方法来界定与理想模型的等值意味着什么,并提出了指南。然后,对非中央奇夸分布的典型正常化转换的简单扩展将这些数值放在一个简单的用于解释校准尺度以作为证据的简单标准上。它表明,证据可以区分正常模型和附近模型,以及Poisson模型和超分散模型。还包含对随机数生成器进行评估和对pi数字统一的应用。还提供样本大小,以便获得预期的合适证据。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
28+阅读 · 2020年11月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年2月20日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
28+阅读 · 2020年11月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员