Deep learning technologies have demonstrated remarkable effectiveness in a wide range of tasks, and deep learning holds the potential to advance a multitude of applications, including in edge computing, where deep models are deployed on edge devices to enable instant data processing and response. A key challenge is that while the application of deep models often incurs substantial memory and computational costs, edge devices typically offer only very limited storage and computational capabilities that may vary substantially across devices. These characteristics make it difficult to build deep learning solutions that unleash the potential of edge devices while complying with their constraints. A promising approach to addressing this challenge is to automate the design of effective deep learning models that are lightweight, require only a little storage, and incur only low computational overheads. This survey offers comprehensive coverage of studies of design automation techniques for deep learning models targeting edge computing. It offers an overview and comparison of key metrics that are used commonly to quantify the proficiency of models in terms of effectiveness, lightness, and computational costs. The survey then proceeds to cover three categories of the state-of-the-art of deep model design automation techniques: automated neural architecture search, automated model compression, and joint automated design and compression. Finally, the survey covers open issues and directions for future research.


翻译:深层学习技术在一系列广泛任务中表现出了显著的效益,深层学习技术具有推动多种应用的潜力,包括边缘计算,在边缘设备上部署深层模型,以便能够进行即时数据处理和反应。一个关键的挑战在于,深层模型的应用往往产生大量的内存和计算成本,但边缘设备通常只能提供非常有限的储存和计算能力,而这种能力在各种设备之间差别很大。这些特点使得难以建立深层学习解决方案,从而释放边缘装置的潜力,同时又符合其限制条件。应对这一挑战的一个有希望的方法是将有效的深层学习模型的设计自动化,这些模型轻度,只需要少量储存,并且仅产生低量的计算间接费用。这一调查全面覆盖了针对边缘计算机的深层学习模型设计自动化技术设计研究的范围。它提供了对通常用于量化模型在有效性、轻度和计算成本方面的熟练程度的主要指标的概述和比较。然后,调查将涵盖深层模型设计自动化结构搜索、自动模型压缩、联合自动自动设计和压缩的未来研究方向。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
35+阅读 · 2021年8月2日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员