In this paper, we propose a frequency-time division network (FreqTimeNet) to improve the performance of deep learning (DL) based OFDM channel estimation. This FreqTimeNet is designed based on the orthogonality between the frequency domain and the time domain. In FreqTimeNet, the input is processed by parallel frequency blocks and parallel time blocks sequentially. By introducing the attention mechanism using the SNR information, an attention based FreqTimeNet (AttenFreqTimeNet) is proposed. Using 3rd Generation Partnership Project (3GPP) channel models, the mean square error (MSE) performance of FreqTimeNet and AttenFreqTimeNet under different scenarios is evaluated. A method for constructing mixed training data is proposed, which could address the generalization problem in DL. It is observed that AttenFreqTimeNet outperforms FreqTimeNet, and FreqTimeNet outperforms other DL networks with reasonable complexity.
翻译:在本文中,我们提议建立一个基于 OFDM 频道估计的频率分流网络(FreqTimeNet), 以改善深层次学习(DL) 的绩效。 这个 FreeqtimeNet 是根据频率域与时间域之间的正方形设计。 在 FreeqTimeNet 中, 输入由平行频率区块和平行时间区块相继处理。 通过使用 SNR 信息引入关注机制, 提议建立一个基于 FreeqTimeNet (AttenFreqTimeNet) 的注意机制 。 使用第三代伙伴关系项目( 3GPP) 频道模型, 在不同情况下对 FreeqtimeNet 和 AttenFreqTimeNet 的平均方形错误( MSE) 进行评估。 提出了构建混合培训数据的方法, 这种方法可以解决 DL 的通用问题 。 人们观察到, AtenFreqTimeNet Net 超越了 FrecTimeNet 和 FreqTimeNet 以合理的复杂度优于其他 DL 网络 。