Recommendation systems are a key modern application of machine learning, but they have the downside that they often draw upon sensitive user information in making their predictions. We show how to address this deficiency by basing a service's recommendation engine upon recommendations from other existing services, which contain no sensitive information by nature. Specifically, we introduce a contextual multi-armed bandit recommendation framework where the agent has access to recommendations for other services. In our setting, the user's (potentially sensitive) information belongs to a high-dimensional latent space, and the ideal recommendations for the source and target tasks (which are non-sensitive) are given by unknown linear transformations of the user information. So long as the tasks rely on similar segments of the user information, we can decompose the target recommendation problem into systematic components that can be derived from the source recommendations, and idiosyncratic components that are user-specific and cannot be derived from the source, but have significantly lower dimensionality. We propose an explore-then-refine approach to learning and utilizing this decomposition; then using ideas from perturbation theory and statistical concentration of measure, we prove our algorithm achieves regret comparable to a strong skyline that has full knowledge of the source and target transformations. We also consider a generalization of our algorithm to a model with many simultaneous targets and no source. Our methods obtain superior empirical results on synthetic benchmarks.
翻译:建议系统是机器学习的一个重要现代应用,但它们有其缺点,在作出预测时往往依赖敏感的用户信息。我们展示了如何解决这一缺陷,办法是将服务的建议引擎建立在其他现有服务的建议的基础上,而其他现有服务的建议没有包含任何自然的敏感信息。具体地说,我们引入了一个背景多武装土匪建议框架,代理商可以从中获取其他服务的建议。在我们的环境下,用户(潜在敏感)信息属于高维潜伏空间,对源和目标任务(非敏感)的理想建议是由用户信息的未知线性转换提供的。只要任务依赖用户信息中的类似部分,我们就可以将目标建议问题分解成系统组成部分,从源建议中可以得出,而特征性强的多武装土匪建议框架,代理商无法从来源获得其他服务的建议,但具有远小得多的维度。我们建议了一种探索式的方法来学习和利用这种解析;然后,使用来自过敏理论和统计集中度测量的理念。只要我们的任务依赖用户信息中的类似部分,我们就可以将目标分解成系统。我们从源建议的问题,我们也没有从一个可比较的合成算法方法,我们获得一个强的顶级分析结果。