Indiscriminate data poisoning attacks are quite effective against supervised learning. However, not much is known about their impact on unsupervised contrastive learning (CL). This paper is the first to consider indiscriminate poisoning attacks of contrastive learning. We propose contrastive poisoning, the first effective such attack on CL. We empirically show that contrastive poisoning, not only drastically reduces the performance of CL algorithms, but also attacks supervised learning models, making it the most generalizable indiscriminate poisoning attack. We also show that CL algorithms with a momentum encoder are more robust to indiscriminate poisoning, and propose a new countermeasure based on matrix completion.


翻译:不分皂白的数据中毒袭击对有监督的学习相当有效。然而,关于它们对未经监督的对比性学习(CL)的影响,人们知之甚少。本文是首先考虑有对比性学习的任意中毒袭击。我们提出了对比性中毒,这是首次对CL进行有效的此类袭击。我们从经验上表明,对比性中毒不仅极大地降低了CL算法的性能,而且袭击了有监督的学习模式,使其成为最普遍的、最普遍的、不分皂白的中毒袭击。我们还表明,带有动因编码器的CL算法对无区别性中毒更为有力,并提出了基于矩阵完成的新应对措施。

0
下载
关闭预览

相关内容

专知会员服务
35+阅读 · 2020年12月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月8日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员