We consider random matrix ensembles on the Hermitian matrices that are heavy tailed, in particular not all moments exist, and that are invariant under the conjugate action of the unitary group. The latter property entails that the eigenvectors are Haar distributed and, therefore, factorise from the eigenvalue statistics. We prove a classification for stable matrix ensembles of this kind of matrices represented in terms of matrices, their eigenvalues and their diagonal entries with the help of the classification of the multivariate stable distributions and the harmonic analysis on symmetric matrix spaces. Moreover, we identify sufficient and necessary conditions for their domains of attraction. To illustrate our findings we discuss for instance elliptical invariant random matrix ensembles and P\'olya ensembles. As a byproduct we generalise the derivative principle on the Hermitian matrices to general tempered distributions.


翻译:我们认为,在埃米提亚矩阵上随机的矩阵集合是大量尾随的,特别是并不是所有时刻都存在,而且根据单一组群的共鸣动作是变化无常的。后一种属性意味着向生者是Haar分布的,因此,从egenvaly统计数据中考虑到。我们证明,在对多变量稳定分布的分类和对对称矩阵空间的调和分析的帮助下,对以矩阵、其电子元值及其对角条目为代表的这类矩阵组合的稳定矩阵组合进行了分类。此外,我们为它们的吸引力领域确定了足够和必要的条件。为了说明我们讨论的结果,例如,椭丽花异随机矩阵组合和P\'olya酶组合。作为副产品,我们将赫米提亚矩阵的衍生原则推广到一般的温和分布中。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
109+阅读 · 2020年11月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
0+阅读 · 2022年1月14日
Arxiv
54+阅读 · 2022年1月1日
Deep Randomized Ensembles for Metric Learning
Arxiv
5+阅读 · 2018年9月4日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
109+阅读 · 2020年11月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员