Triangulation algorithms that conform to a set of non-intersecting input segments typically proceed in an incremental fashion, by inserting points first, and then segments. Inserting a segment amounts to: (1) deleting all the triangles it intersects; (2) filling the so generated hole with two polygons that have the wanted segment as shared edge; (3) triangulate each polygon separately. In this paper we prove that these polygons are such that all their convex vertices but two can be used to form triangles in an earcut fashion, without the need to check whether other polygon points are located within each ear. The fact that any simple polygon contains at least three convex vertices guarantees the existence of a valid ear to cut, ensuring convergence. Not only this translates to an optimal deterministic linear time triangulation algorithm, but such algorithm is also trivial to implement. We formally prove the correctness of our approach, also validating it in practical applications and comparing it with prior art.


翻译:符合一组非交叉输入部分的三角算法通常以递增方式进行, 先插入点, 然后再插入段。 插入一个区段等于:(1) 删除它交叉的所有三角形; (2) 以两个多边形填充这样产生的洞口, 以两个多边形填充想要的区段作为共享边缘; (3) 将每个多边形分开三角。 在本文中, 我们证明这些多边形能够使它们所有的 convex 脊椎, 但两个可以用来以耳切方式形成三角形, 而不必检查其他多边形点是否位于每个耳内。 任何简单的多边形都至少包含三个convex 脊椎, 保证有一个有效的耳朵可以切开, 确保汇合。 这不仅能转化为最佳的确定性线性线性线性三角算法, 而且这种算法也是微不足道的。 我们正式证明了我们的方法的正确性, 同时在实际应用中验证它, 并与以前的艺术比较它 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
11+阅读 · 2021年2月17日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员