Systematic enumeration and identification of unique 3D spatial topologies of complex engineering systems such as automotive cooling layouts, hybrid-electric power trains, and aero-engines are essential to search their exhaustive design spaces to identify spatial topologies that can satisfy challenging system requirements. However, efficient navigation through discrete 3D spatial topology options is a very challenging problem due to its combinatorial nature and can quickly exceed human cognitive abilities at even moderate complexity levels. Here we present a new, efficient, and generic design framework that utilizes mathematical spatial graph theory to represent, enumerate, and identify distinctive 3D topological classes for an abstract engineering system, given its system architecture (SA) -- its components and interconnections. Spatial graph diagrams (SGDs) are generated for a given SA from zero to a specified maximum crossing number. Corresponding Yamada polynomials for all the planar SGDs are then generated. SGDs are categorized into topological classes, each of which shares a unique Yamada polynomial. Finally, for each topological class, one 3D geometric model is generated for an SGD with the fewest interconnect crossings. Several case studies are shown to illustrate the different features of our proposed framework. Design guidelines are also provided for practicing engineers to aid the utilization of this framework for application to different types of real-world problems.
翻译:对汽车冷却布局、混合电动列车和气动引擎等复杂工程系统独特的三维空间地形进行系统查点和确定,对于寻找其详尽的设计空间以找出能够满足具有挑战性的系统要求的空间地形至关重要。然而,通过离散的三维空间地形选项进行高效导航,由于其组合性质,是一个非常具有挑战性的问题,可以在中等复杂程度上迅速超过人的认知能力。在这里,我们提出了一个新的、高效的通用设计框架,利用数学空间图理论来代表、罗列和确定抽象工程系统独特的三维地形类,考虑到其系统结构(SA) -- -- 其组成部分和互联性。为特定SA从零到规定的最大跨越号码生成了空间图示图图图。随后产生了对所有平板 SGDs 进行校验的山田多元面图。 SGDs被归类为表层类,每个类都共用一个独特的亚马达多元的多元面图理学。最后,为每个顶层工程系统生成一个三维度模型,用于SGD和少数次的相互连接框架。还绘制了空间图图图图图图图图图图图图图图。还展示了我们用于实际应用的框架。为不同类型。为实际应用框架提供了各种的案例研究研究。为不同类型提供了向工程师框架。为不同版本的图例研究。为不同版本的图例研究提供了。