We study the problem of sampling from a target distribution in $\mathbb{R}^d$ whose potential is not smooth. Compared with the sampling problem with smooth potentials, this problem is more challenging and much less well-understood due to the lack of smoothness. In this paper, we propose a novel sampling algorithm for a class of non-smooth potentials by first approximating them by smooth potentials using a technique that is akin to Nesterov smoothing. We then utilize sampling algorithms on the smooth potentials to generate approximate samples from the original non-smooth potentials. With a properly chosen smoothing intensity, the accuracy of the algorithm is guaranteed. For strongly log-concave distributions, our algorithm can achieve $\mathcal{E}$ error in Wasserstein-2 distance with complexity $ \widetilde{\mathcal{O}} \left( \frac{ d^{1/3}}{ \mathcal{E}^{5/3}} \right) .$ For log-concave distributions, we achieve $\mathcal{E}$ error in total variation with complexity $\mathcal{O} \left(\frac{ M_\pi d }{ \mathcal{E}^{3}} \right) $ in expectation with $M_\pi$ being the second moment of the target distribution. For target distributions satisfying the logarithmic-Sobolev inequality, our algorithm has complexity $\widetilde{\mathcal{O}} \left( \frac{ d }{\mathcal{E}}\right)$.
翻译:{mathbb{R}d$, 其潜力不平滑。 与光滑潜力的取样问题相比, 这个问题更具有挑战性, 并且由于缺乏光滑性, 更不易理解。 在本文中, 我们提出一个新的非移动潜力分类的抽样算法, 首先接近它们, 使用类似 Nesterov 平滑的技术来平滑它们。 然后我们利用光滑潜力的取样算法, 从原始的非移动潜力中产生大约的样本。 在正确选择的平滑强度下, 算法的准确性得到保证。 对于强烈的日志调合分布, 我们的算法可以在瓦列斯特-2 距离中实现 $\ mathcalledilade\ mathcal{O\\\\ lexlight\\ left leg (\ frcrc=crl= mcal=lational_ral_ral_ral_ral_ral_ ral_ ral_ ral_ral_ ral_ ral_ ral_ ral_ ral_ ral_ ral_ ral_ ral_ ral_ ral_ ral_ ral_ ral_ ral_ ral_ ral_ ral_ ral_ =_ ral_) libral_ r_ rl_ =c_ ====c_ lic_ ==================l=l=l=c=c=c=====c======c======================l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l=l==ll=l=l=lll==l=l=l=l=l=l