We investigate in this work a fully-discrete semi-Lagrangian approximation of second order possibly degenerate Hamilton-Jacobi-Bellman (HJB) equations on a bounded domain with oblique boundary conditions. These equations appear naturally in the study of optimal control of diffusion processes with oblique reflection at the boundary of the domain. The proposed scheme is shown to satisfy a consistency type property, it is monotone and stable. Our main result is the convergence of the numerical solution towards the unique viscosity solution of the HJB equation. The convergence result holds under the same asymptotic relation between the time and space discretization steps as in the classical setting for semi-Lagrangian schemes. We present some numerical results that confirm the numerical convergence of the scheme.


翻译:在这项工作中,我们调查了一种完全分解的半拉格朗吉亚近似第二顺序,可能使汉密尔顿-贾科比-贝勒曼(HJB)等式在边界条件斜斜的封闭区方程式上出现。这些等式自然地出现在关于对扩散过程进行最佳控制的研究中,在域边界上斜反射。拟议的办法显示符合一致性类型属性,是单质的和稳定的。我们的主要结果是数字解决办法与HJB等式独特的粘度解决办法趋于一致。趋同的结果与半拉格朗江计划的传统环境一样,在时间和空间分解步骤之间有着同样的零星关系。我们提出了一些数字结果,证实了这个办法的数字趋同。

0
下载
关闭预览

相关内容

【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
149+阅读 · 2021年5月9日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
德先生
53+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月12日
Haar-Weave-Metropolis kernel
Arxiv
0+阅读 · 2021年11月11日
VIP会员
相关VIP内容
【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
149+阅读 · 2021年5月9日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
德先生
53+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员