Local-to-global learning approach plays an essential role in Bayesian network (BN) structure learning. Existing local-to-global learning algorithms first construct the skeleton of a DAG (directed acyclic graph) by learning the MB (Markov blanket) or PC (parents and children) of each variable in a data set, then orient edges in the skeleton. However, existing MB or PC learning methods are often computationally expensive especially with a large-sized BN, resulting in inefficient local-to-global learning algorithms. To tackle the problem, in this paper, we develop an efficient local-to-global learning approach using feature selection. Specifically, we first analyze the rationale of the well-known Minimum-Redundancy and Maximum-Relevance (MRMR) feature selection approach for learning a PC set of a variable. Based on the analysis, we propose an efficient F2SL (feature selection-based structure learning) approach to local-to-global BN structure learning. The F2SL approach first employs the MRMR approach to learn a DAG skeleton, then orients edges in the skeleton. Employing independence tests or score functions for orienting edges, we instantiate the F2SL approach into two new algorithms, F2SL-c (using independence tests) and F2SL-s (using score functions). Compared to the state-of-the-art local-to-global BN learning algorithms, the experiments validated that the proposed algorithms in this paper are more efficient and provide competitive structure learning quality than the compared algorithms.


翻译:本地到全球的学习方法在巴伊西亚网络(BN)结构学习中发挥着不可或缺的作用。 现有的本地到全球的学习算法首先通过在数据集中学习每个变量的 MB( Markov 毯子)或PC(父母和儿童),然后在骨架中以边缘为主。 但是,现有的MB或PC学习方法往往计算成本昂贵,特别是使用大型的 BN(基于选择结构学习),导致本地到全球的学习算法效率低下。为了解决这个问题,我们在本文件中利用特征选择来开发一种高效的本地到全球的学习方法。 具体地说,我们首先通过分析众所周知的最低时间和最高距离(MRMR)特征选择方法的基本原理,以学习一个已知的最低时间和最高距离(MRMRMR)特性选择方法,以学习一组变量的PC。 根据分析,我们建议一种高效的F2SL(基于选择结构学习较快的结构)方法,FSL(在骨架中学习DAG骨架、随后或最垂直的SLSL)的升级方法。 将独立或SLSLSL的快速测试功能用于F的F-reval2级。 独立或评分。

0
下载
关闭预览

相关内容

边缘机器学习,21页ppt
专知会员服务
81+阅读 · 2021年6月21日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
0+阅读 · 2022年2月22日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员