We construct a continuous domain for temporal discretization of differential equations. By using this domain, and the domain of Lipschitz maps, we formulate a generalization of the Euler operator, which exhibits second-order convergence. We prove computability of the operator within the framework of effectively given domains. The operator only requires the vector field of the differential equation to be Lipschitz continuous, in contrast to the related operators in the literature which require the vector field to be at least continuously differentiable. Within the same framework, we also analyze temporal discretization and computability of another variant of the Euler operator formulated according to Runge-Kutta theory. We prove that, compared with this variant, the second-order operator that we formulate directly, not only imposes weaker assumptions on the vector field, but also exhibits superior convergence rate. We implement the first-order, second-order, and Runge-Kutta Euler operators using arbitrary-precision interval arithmetic, and report on some experiments. The experiments confirm our theoretical results. In particular, we observe the superior convergence rate of our second-order operator compared with the Runge-Kutta Euler and the common (first-order) Euler operators.
翻译:我们为差异方程式的暂时分解构建了一个连续的域。 通过使用此域和利普西茨地图的域,我们制定了Euler操作员的概括性,这显示了二级趋同。我们证明操作员在有效给定域框架内的可强制性。操作员只要求差异方程式的矢量域是连续的Lipschitz,而文献中的相关操作员则要求矢量字段至少可以持续地进行差异。在同一框架内,我们还分析了Euler操作员根据Runge-库塔理论制定的另一个变异体的时间分解性和可强制性。我们证明,与这个变异体相比,我们直接拟订的第二级操作员不仅对矢量字段规定了较弱的假设,而且展示了超强的趋同率。我们使用任意的精度间距算法执行第一级、Runge-Kutta Euler操作员以及一些实验报告。实验证实了我们的理论结果。我们特别看到我们第二级操作员与Runge-Kutta Euler操作员和共同的Euler-ster的趋同率。