Causal inference in observational studies can be challenging when confounders are subject to missingness. Generally, the identification of causal effects is not guaranteed even under restrictive parametric model assumptions when confounders are missing not at random. To address this, We propose a general framework to establish the identification of causal effects when confounders are subject to treatment-independent missingness, which means that the missing data mechanism is independent of the treatment, given the outcome and possibly missing confounders. We give special consideration to commonly-used models for continuous and binary outcomes and provide counterexamples when identification fails. For estimation, we provide a weighted estimation equation estimating method for model parameters and purpose three estimators for the average causal effect based on the estimated models. We evaluate the finite-sample performance of the estimators via simulations. We further illustrate the proposed method with real data sets from the National Health and Nutrition Examination Survey.


翻译:一般来说,即使在限制性的参数模型假设下,当混淆者并非随机失踪时,也不能保证确定因果关系。为了解决这个问题,我们提议了一个总框架,以确定在混杂者遭受治疗独立的缺失时,确定因果关系,这意味着缺失的数据机制与治疗无关,考虑到结果和可能缺失的混杂者。我们特别考虑通用的连续和二进制结果模型,并在识别失败时提供反样。关于估计,我们为模型参数提供加权估计方程估计方法,并基于估计模型,为平均因果关系提供三个估计值。我们通过模拟评估估计值的有限抽样性能。我们用国家健康和营养调查中的真实数据集进一步说明拟议方法。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
72+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2022年4月30日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
72+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员