As the acquisition cost of the graphics processing unit (GPU) has decreased, personal computers (PC) can handle optimization problems nowadays. In optimization computing, intelligent swarm algorithms (SIAs) method is suitable for parallelization. However, a GPU-based Simplified Swarm Optimization Algorithm has never been proposed. Accordingly, this paper proposed Parallel Simplified Swarm Optimization (PSSO) based on the CUDA platform considering computational ability and versatility. In PSSO, the theoretical value of time complexity of fitness function is O (tNm). There are t iterations and N fitness functions, each of which required pair comparisons m times. pBests and gBest have the resource preemption when updating in previous studies. As the experiment results showed, the time complexity has successfully reduced by an order of magnitude of N, and the problem of resource preemption was avoided entirely.


翻译:由于图形处理单位(GPU)的购置成本已经下降,个人计算机(PC)现在可以处理优化问题。在优化计算中,智能群算法(SIAs)方法适合平行使用。然而,从未提出过基于GPU的简化Swarm优化Aprostimization Algorithm的简化Swarm优化软件。因此,本文提议根据CUDA平台的平行简化Swarm优化软件(PSO),考虑计算能力和多功能。在PSSO,健身功能的时间复杂性的理论价值是O(tNm)。有两种迭代和N健康功能,每个功能都需要对对比 m 。 PBests和Gest在更新前几次研究时,资源优先。实验结果显示,时间复杂性因N级的顺序而成功减少,资源提前问题被完全避免。

0
下载
关闭预览

相关内容

专知会员服务
30+阅读 · 2021年7月19日
专知会员服务
36+阅读 · 2021年7月17日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
如何给你PyTorch里的Dataloader打鸡血
极市平台
15+阅读 · 2019年5月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
已删除
将门创投
4+阅读 · 2017年12月5日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
如何给你PyTorch里的Dataloader打鸡血
极市平台
15+阅读 · 2019年5月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
已删除
将门创投
4+阅读 · 2017年12月5日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员