如何给你PyTorch里的Dataloader打鸡血

2019 年 5 月 21 日 极市平台

加入极市专业CV交流群,与6000+来自腾讯,华为,百度,北大,清华,中科院等名企名校视觉开发者互动交流!更有机会与李开复老师等大牛群内互动!

同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流点击文末“阅读原文”立刻申请入群~


作者 | MKFMIKU

来源 | https://zhuanlan.zhihu.com/p/66145913 

已获作者授权,请勿二次转载


在利用DL解决图像问题时,影响训练效率最大的有时候是GPU,有时候也可能是CPU和你的磁盘。


很多设计不当的任务,在训练神经网络的时候,大部分时间都是在从磁盘中读取数据,而不是做 Backpropagation 。这种症状的体现是使用 Nividia-smi 查看 GPU 使用率时,Memory-Usage 占用率很高,但是 GPU-Util 时常为 0% ,如下图所示:



如何解决这种问题呢?在 Nvidia 提出的分布式框架 Apex 里面,我们在源码里面找到了一个简单的解决方案:

https://github.com/NVIDIA/apex/blob/f5cd5ae937f168c763985f627bbf850648ea5f3f/examples/imagenet/main_amp.py#L256


class data_prefetcher():    def __init__(self, loader):        self.loader = iter(loader)        self.stream = torch.cuda.Stream()        self.mean = torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]).cuda().view(1,3,1,1)        self.std = torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]).cuda().view(1,3,1,1)        # With Amp, it isn't necessary to manually convert data to half.        # if args.fp16:        #     self.mean = self.mean.half()        #     self.std = self.std.half()        self.preload()
def preload(self): try: self.next_input, self.next_target = next(self.loader) except StopIteration: self.next_input = None self.next_target = None return with torch.cuda.stream(self.stream): self.next_input = self.next_input.cuda(non_blocking=True) self.next_target = self.next_target.cuda(non_blocking=True) # With Amp, it isn't necessary to manually convert data to half. # if args.fp16: # self.next_input = self.next_input.half() # else: self.next_input = self.next_input.float() self.next_input = self.next_input.sub_(self.mean).div_(self.std)


我们能看到 Nvidia 是在读取每次数据返回给网络的时候,预读取下一次迭代需要的数据,那么对我们自己的训练代码只需要做下面的改造:


training_data_loader = DataLoader(    dataset=train_dataset,    num_workers=opts.threads,    batch_size=opts.batchSize,    pin_memory=True,    shuffle=True,)for iteration, batch in enumerate(training_data_loader, 1):    # 训练代码
#-------------升级后---------
data, label = prefetcher.next()iteration = 0while data is not None: iteration += 1 # 训练代码 data, label = prefetcher.next()


这样子我们的 Dataloader 就像打了鸡血一样提高了效率很多,如下图:



当然,最好的解决方案还是从硬件上,把读取速度慢的机械硬盘换成 NVME 固态吧~


补充几个原帖评论区的优质解释:

雨宫夏一

1.把内存变成硬盘,把需要读的数据塞到里面去,这样加快了io。代码实例:mount -t tmpfs -o size=xxG tmpfs /your_path

2.上NVIDIA的dali模块,这样把一些预处理放到GPU上,加速一大波。


某一个吃货

原理:https://github.com/NVIDIA/apex/issues/304#issuecomment-493562789


也欢迎各位留言评论一起交流~





*延伸阅读



点击左下角阅读原文”,即可申请加入极市目标跟踪、目标检测、工业检测、人脸方向、视觉竞赛等技术交流群,更有每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流,一起来让思想之光照的更远吧~



觉得有用麻烦给个好看啦~  

登录查看更多
15

相关内容

 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
29+阅读 · 2020年5月19日
《代码整洁之道》:5大基本要点
专知会员服务
50+阅读 · 2020年3月3日
《动手学深度学习》(Dive into Deep Learning)PyTorch实现
专知会员服务
120+阅读 · 2019年12月31日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
55+阅读 · 2019年11月20日
【书籍】深度学习框架:PyTorch入门与实践(附代码)
专知会员服务
165+阅读 · 2019年10月28日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
PyTorch模型训练特征图可视化(TensorboardX)
极市平台
33+阅读 · 2019年6月29日
PyTorch 学习笔记(一):让PyTorch读取你的数据集
极市平台
16+阅读 · 2019年4月24日
目标检测中图像增强,mixup 如何操作?
极市平台
30+阅读 · 2019年2月5日
PyTorch中在反向传播前为什么要手动将梯度清零?
极市平台
39+阅读 · 2019年1月23日
一次 PyTorch 的踩坑经历,以及如何避免梯度成为NaN
手把手教你由TensorFlow上手PyTorch(附代码)
数据派THU
5+阅读 · 2017年10月1日
教程 | 如何从TensorFlow转入PyTorch
深度学习世界
38+阅读 · 2017年9月30日
Generating Rationales in Visual Question Answering
Arxiv
5+阅读 · 2020年4月4日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
9+阅读 · 2016年10月27日
VIP会员
相关VIP内容
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
29+阅读 · 2020年5月19日
《代码整洁之道》:5大基本要点
专知会员服务
50+阅读 · 2020年3月3日
《动手学深度学习》(Dive into Deep Learning)PyTorch实现
专知会员服务
120+阅读 · 2019年12月31日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
55+阅读 · 2019年11月20日
【书籍】深度学习框架:PyTorch入门与实践(附代码)
专知会员服务
165+阅读 · 2019年10月28日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
PyTorch模型训练特征图可视化(TensorboardX)
极市平台
33+阅读 · 2019年6月29日
PyTorch 学习笔记(一):让PyTorch读取你的数据集
极市平台
16+阅读 · 2019年4月24日
目标检测中图像增强,mixup 如何操作?
极市平台
30+阅读 · 2019年2月5日
PyTorch中在反向传播前为什么要手动将梯度清零?
极市平台
39+阅读 · 2019年1月23日
一次 PyTorch 的踩坑经历,以及如何避免梯度成为NaN
手把手教你由TensorFlow上手PyTorch(附代码)
数据派THU
5+阅读 · 2017年10月1日
教程 | 如何从TensorFlow转入PyTorch
深度学习世界
38+阅读 · 2017年9月30日
Top
微信扫码咨询专知VIP会员