Automatic network management driven by Artificial Intelligent technologies has been heatedly discussed over decades. However, current reports mainly focus on theoretic proposals and architecture designs, works on practical implementations on real-life networks are yet to appear. This paper proposes our effort toward the implementation of knowledge graph driven approach for autonomic network management in software defined networks (SDNs), termed as SeaNet. Driven by the ToCo ontology, SeaNet is reprogrammed based on Mininet (a SDN emulator). It consists three core components, a knowledge graph generator, a SPARQL engine, and a network management API. The knowledge graph generator represents the knowledge in the telecommunication network management tasks into formally represented ontology driven model. Expert experience and network management rules can be formalized into knowledge graph and by automatically inferenced by SPARQL engine, Network management API is able to packet technology-specific details and expose technology-independent interfaces to users. The Experiments are carried out to evaluate proposed work by comparing with a commercial SDN controller Ryu implemented by the same language Python. The evaluation results show that SeaNet is considerably faster in most circumstances than Ryu and the SeaNet code is significantly more compact. Benefit from RDF reasoning, SeaNet is able to achieve O(1) time complexity on different scales of the knowledge graph while the traditional database can achieve O(nlogn) at its best. With the developed network management API, SeaNet enables researchers to develop semantic-intelligent applications on their own SDNs.


翻译:由人工智能技术驱动的自动网络管理几十年来一直受到热烈讨论。然而,目前的报告主要侧重于理论建议和结构设计,实际实施实际生活网络的工作尚未出现。本文件建议我们努力在软件定义的网络(称为SeaNet)中实施由知识图形驱动的自动网络管理方法,称为SeaNet。在ToCo肿瘤学的驱动下,SeNet能够根据迷你网(SDN模拟器)重新编程。它由三个核心部分组成,一个知识图形生成器、一个SPARQL引擎和一个网络管理 API。知识图生成器代表电信网络管理任务的知识,将其正式纳入正式代表的内科驱动模式。专家经验和网络管理规则可以正式纳入知识图表,由SPARQL引擎自动推断。网络管理API能够将特定技术细节进行包装,并将技术依赖性界面的界面暴露给用户。通过将SDN Controi应用软件与同一语言执行的SPARQLOython 和网络管理管理 APLOython 的计算机进行比较来评估拟议的SDI应用。在SyNet上,在最快速的SyDFSeral Deal deal deal decal deal deal deal deal deal dealdaldal is a be a a maxal be a magiew a ma mess a ma mal be a maxalde a a maxal a madal be a maxal a be a maxal a a a a maxildaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldal 可以大大可以大大可以大大可以大大进到海洋数据,在海洋上,在海洋上,在海洋管理比,在最快的Saldaldaldaldaldaldaldaldaldaldaldal上可以大大可以大大可以大大可以大大可以大大可以大大可以大大可以大大可以大大可以大大可以大大可以大大可以大大可以大大可以大大可以大大可以大大可以大大可以大大进进。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
专知会员服务
51+阅读 · 2021年6月30日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员