Modelling the near-wall region of wall-bounded turbulent flows is a widespread practice to reduce the computational cost of large-eddy simulations (LESs) at high Reynolds number. As a first step towards a data-driven wall-model, a neural-network-based approach to predict the near-wall behaviour in a turbulent open channel flow is investigated. The fully-convolutional network (FCN) proposed by Guastoni et al. [preprint, arXiv:2006.12483] is trained to predict the two-dimensional velocity-fluctuation fields at $y^{+}_{\rm target}$, using the sampled fluctuations in wall-parallel planes located farther from the wall, at $y^{+}_{\rm input}$. The data for training and testing is obtained from a direct numerical simulation (DNS) at friction Reynolds numbers $Re_{\tau} = 180$ and $550$. The turbulent velocity-fluctuation fields are sampled at various wall-normal locations, i.e. $y^{+} = \{15, 30, 50, 80, 100, 120, 150\}$. At $Re_{\tau}=550$, the FCN can take advantage of the self-similarity in the logarithmic region of the flow and predict the velocity-fluctuation fields at $y^{+} = 50$ using the velocity-fluctuation fields at $y^{+} = 100$ as input with less than 20% error in prediction of streamwise-fluctuations intensity. These results are an encouraging starting point to develop a neural-network based approach for modelling turbulence at the wall in numerical simulations.
翻译:建模墙上动荡流的近墙区域是一种普遍的做法,可以降低高Reynolds数的大型模拟(LES)计算成本。作为向数据驱动的墙型模型迈出的第一步,正在调查以神经网络为基础的方法,以预测在动荡的开放通道流中的近墙行为。Guastoni等人提议的全演化网络(FCN) = 180美元和550美元。在各种墙-正常地点,即美元= 美元= 美元 美元 美元 的高速流变速模型,使用离墙更远的墙型模型($@rm 输入美元 美元) 的抽样计算值波动。用于培训和测试的数据来自直接的数字模拟(DNS), 摩擦号 $ Re ⁇ tau} = 180美元 和 550美元 。 动荡速度变速场在各种墙-正常地点,即 美元= 美元 美元 速度 = 美元 0.15、 美元 美元 的轨道 = 50、 100、 150美元 美元 的轨道 的轨道 = 直径 的轨道 。在50 的轨道上, 直流 直地, 直为 直 直 直 直 直 直为 直 直 直 直 。