Handwritten word recognition from document images using deep learning is an active research area in the field of Document Image Analysis and Recognition. In the present era of Big data, since more and more documents are being generated and archived in the compressed form to provide better storage and transmission efficiencies, the problem of word recognition in the respective compressed domain without decompression becomes very challenging. The traditional methods employ decompression and then apply learning algorithms over them, therefore, novel algorithms are to be designed in order to apply learning techniques directly in the compressed representations/domains. In this direction, this research paper proposes a novel HWRCNet model for handwritten word recognition directly in the compressed domain specifically focusing on JPEG format. The proposed model combines the Convolutional Neural Network (CNN) and Bi-Directional Long Short Term Memory (BiLSTM) based Recurrent Neural Network (RNN). Basically, we train the model using JPEG compressed word images and observe a very appealing performance with $89.05\%$ word recognition accuracy and $13.37\%$ character error rate.


翻译:利用深层学习,从文档图像中手写字识别,是文件图像分析和识别领域的一个积极研究领域。在目前大数据时代,由于越来越多的文件以压缩形式生成和存档,以提供更好的存储和传输效率,因此,在相关压缩域中,不压缩的单词识别问题变得非常棘手。传统方法采用降压,然后在它们上应用学习算法,因此,将设计新的算法,以便直接在压缩显示/域中应用学习技术。在这方面,本研究论文提出一个新的HWRCNet模型,用于在压缩域中直接手写字识别,具体侧重于JPEG格式。拟议的模型将革命神经网络(CNN)和基于常规神经网络(BILSTM)的双调短期内存(BILSTM)结合起来。基本上,我们用JEG压缩单词图像来培训模型,并用89.05美元单词识别精确度和13.37美元字符错误率来观察非常有吸引力的性。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Arxiv
11+阅读 · 2019年6月19日
Arxiv
21+阅读 · 2018年5月23日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员