In 2022, over half of the web traffic was accessed through mobile devices. By reducing the energy consumption of mobile web apps, we can not only extend the battery life of our devices, but also make a significant contribution to energy conservation efforts. For example, if we could save only 5% of the energy used by web apps, we estimate that it would be enough to shut down one of the nuclear reactors in Fukushima. This paper presents a comprehensive overview of energy-saving experiments and related approaches for mobile web apps, relevant for researchers and practitioners. To achieve this objective, we conducted a systematic literature review and identified 44 primary studies for inclusion. Through the mapping and analysis of scientific papers, this work contributes: (1) an overview of the energy-draining aspects of mobile web apps, (2) a comprehensive description of the methodology used for the energy-saving experiments, and (3) a categorization and synthesis of various energy-saving approaches.


翻译:2022年,超过一半的Web流量是通过移动设备访问的。通过减少移动Web应用程序的能源消耗,我们不仅可以延长设备的电池寿命,还可以为节约能源做出重大贡献。例如,如果我们只能节省5%的Web应用程序使用的能量,我们估计这已足以关闭福岛的一个核反应堆。本文提供了移动Web应用程序的节能实验和相关方法的全面概述,适用于研究人员和实践者。为此,我们进行了系统的文献综述,并确定了44篇主要研究的包含范围。通过对科学论文的映射和分析,本研究在以下方面做出了贡献:(1)移动Web应用程序能耗方面的概述,(2)节能实验所采用方法的全面描述,以及(3)各种节能方法的分类和综合。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员