In this paper, we propose a sensitivity-free and multi-objective structural design methodology called data-driven topology design. It is schemed to obtain high-performance material distributions from initially given material distributions in a given design domain. Its basic idea is to iterate the following processes: (i) selecting material distributions from a dataset of material distributions according to eliteness, (ii) generating new material distributions using a deep generative model trained with the selected elite material distributions, and (iii) merging the generated material distributions with the dataset. Because of the nature of a deep generative model, the generated material distributions are diverse and inherit features of the training data, that is, the elite material distributions. Therefore, it is expected that some of the generated material distributions are superior to the current elite material distributions, and by merging the generated material distributions with the dataset, the performances of the newly selected elite material distributions are improved. The performances are further improved by iterating the above processes. The usefulness of data-driven topology design is demonstrated through numerical examples.
翻译:在本文中,我们提出了一种称为数据驱动的地形设计,不敏感和多目标的结构设计方法,目的是从一个特定设计领域的最初特定材料分发中获取高性能材料分发;其基本想法是根据精英程度从材料分发数据集中筛选材料分发材料,(二)利用经过精选材料分发培训的深层基因化模型产生新的材料分发,(三)将产生的材料分发与数据集合并。由于深层基因化模型的性质,产生的材料分发是多种多样的,并继承了培训数据的特征,即精锐材料分发。因此,预计一些产生的材料分发优于目前的精英材料分发,通过将产生的材料分发与数据集合并,新选定的精英材料分发的性能得到改进。通过上述过程的重复,业绩得到进一步提高。数据驱动的地形设计有用性通过数字示例得到证明。