This paper develops manifold learning techniques for the numerical solution of PDE-constrained Bayesian inverse problems on manifolds with boundaries. We introduce graphical Mat\'ern-type Gaussian field priors that enable flexible modeling near the boundaries, representing boundary values by superposition of harmonic functions with appropriate Dirichlet boundary conditions. We also investigate the graph-based approximation of forward models from PDE parameters to observed quantities. In the construction of graph-based prior and forward models, we leverage the ghost point diffusion map algorithm to approximate second-order elliptic operators with classical boundary conditions. Numerical results validate our graph-based approach and demonstrate the need to design prior covariance models that account for boundary conditions.
翻译:本文开发了多种学习技术, 以数字方式解决受PDE制约的巴伊西亚在多块边界上的反向问题。 我们引入图形 Mat\'ern- type Gaussian 字段前缀, 能够在边界附近进行灵活的建模, 代表着边界的边界值, 通过将调力功能与适当的迪里赫莱特边界条件叠加在一起, 代表着边界值。 我们还调查了基于图形的远方模型从PDE参数到观察到的数量的近似值。 在构建基于图的前方和前方模型时, 我们利用幽灵点扩散地图算法, 将二等离岸操作者与经典边界条件相近。 数字结果验证了我们的图形方法, 并证明需要设计之前考虑边界条件的变量模型。