Unsupervised/self-supervised graph neural networks (GNN) are vulnerable to inherent randomness in the input graph data which greatly affects the performance of the model in downstream tasks. In this paper, we alleviate the interference of graph randomness and learn appropriate representations of nodes without label information. To this end, we propose USER, an unsupervised robust version of graph neural networks that is based on structural entropy. We analyze the property of intrinsic connectivity and define intrinsic connectivity graph. We also identify the rank of the adjacency matrix as a crucial factor in revealing a graph that provides the same embeddings as the intrinsic connectivity graph. We then introduce structural entropy in the objective function to capture such a graph. Extensive experiments conducted on clustering and link prediction tasks under random-noises and meta-attack over three datasets show USER outperforms benchmarks and is robust to heavier randomness.
翻译:无监督/自我监督的图形神经网络(GNN)在输入图形数据中容易受到固有的随机性的影响,这极大地影响了该模型在下游任务中的性能。 在本文中,我们减轻了图形随机性的干扰,并学习了没有标签信息的节点的适当表达方式。 为此,我们提议了基于结构酶的未经监督的图形神经网络的稳健版本USER。我们分析了内在连通的属性,并定义了内在连通性图。我们还确定了相邻矩阵的等级,作为显示一个提供与内在连通图相同嵌入的图形的图表的一个关键因素。我们随后在目标函数中引入结构矩形以捕捉这样的图表。在随机噪音和对三个数据集的元攻击下进行关于组合和连接预测任务的广泛实验显示了USER的超常性基准,并且强于更重的随机性。