The ability to generate dynamic walking in real-time for bipedal robots with input constraints and underactuation has the potential to enable locomotion in dynamic, complex and unstructured environments. Yet, the high-dimensional nature of bipedal robots has limited the use of full-order rigid body dynamics to gaits which are synthesized offline and then tracked online. In this work we develop an online nonlinear model predictive control approach that leverages the full-order dynamics to realize diverse walking behaviors. Additionally, this approach can be coupled with gaits synthesized offline via a desired reference to enable a shorter prediction horizon and rapid online re-planning, bridging the gap between online reactive control and offline gait planning. We demonstrate the proposed method, both with and without an offline gait, on the planar robot AMBER-3M in simulation and on hardware.
翻译:具有输入限制和作用不足的双翼机器人实时产生动态行走能力,有可能在动态、复杂和无结构的环境中进行移动。然而,双型机器人的高维性质限制了将全序硬体动态用于音轨,这些音轨是离线合成的,然后在线跟踪。在这项工作中,我们开发了一个在线非线性模型预测控制方法,利用全序动态来实现各种不同的行走行为。此外,这一方法还可以与通过理想的参考而从线外合成的音频合成相配合,以缩短预测地平线和快速在线再规划,缩小在线反应控制和离线游戏规划之间的差距。我们在模拟和硬件中演示了平面机器人AMBER-3M的拟议方法。