This work is about recovering an analysis-sparse vector, i.e. sparse vector in some transform domain, from under-sampled measurements. In real-world applications, there often exist random analysis-sparse vectors whose distribution in the analysis domain are known. To exploit this information, a weighted $\ell_1$ analysis minimization is often considered. The task of choosing the weights in this case is however challenging and non-trivial. In this work, we provide an analytical method to choose the suitable weights. Specifically, we first obtain a tight upper-bound expression for the expected number of required measurements. This bound depends on two critical parameters: support distribution and expected sign of the analysis domain which are both accessible in advance. Then, we calculate the near-optimal weights by minimizing this expression with respect to the weights. Our strategy works for both noiseless and noisy settings. Numerical results demonstrate the superiority of our proposed method. Specifically, the weighted $\ell_1$ analysis minimization with our near-optimal weighting design considerably needs fewer measurements than its regular $\ell_1$ analysis counterpart.


翻译:这项工作涉及从抽样不足的测量中从一个分析偏差矢量(即某些变异区域中的稀释矢量)中回收分析偏差矢量。 在现实世界的应用中,往往存在随机分析偏差矢量,这些矢量在分析域的分布是已知的。 为了利用这一信息,通常会考虑加权 $\ ell_ 1$ 分析最小化。 选择本案的加权数是一项具有挑战性和非三重性的任务。 在这项工作中, 我们提供了一种分析方法来选择合适的加权数。 具体地说, 我们首先对预期的所需测量数获得严格的上下限表达式。 这取决于两个关键参数: 支持分布和预期的分析偏差的标记, 两者都是可以事先获得的。 然后, 我们计算接近最佳的加权数, 方法是在重量方面将这一表达式最小化。 我们的战略适用于无噪音的环境和噪音的环境。 数字结果显示了我们拟议方法的优越性。 具体地说, 加权 $\ $_ 1$ 1% 分析最小化, 与我们接近最佳的加权的加权设计需要大大少于正常的 $\ ell_ 1$ 1$ 分析对应。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
49+阅读 · 2022年10月2日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月23日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
讲座报名丨 ICML专场
THU数据派
0+阅读 · 2021年9月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员