Stochastic Gradient Algorithms (SGAs) are ubiquitous in computational statistics, machine learning and optimisation. Recent years have brought an influx of interest in SGAs, and the non-asymptotic analysis of their bias is by now well-developed. However, relatively little is known about the optimal choice of the random approximation (e.g mini-batching) of the gradient in SGAs as this relies on the analysis of the variance and is problem specific. While there have been numerous attempts to reduce the variance of SGAs, these typically exploit a particular structure of the sampled distribution by requiring a priori knowledge of its density's mode. It is thus unclear how to adapt such algorithms to non-log-concave settings. In this paper, we construct a Multi-index Antithetic Stochastic Gradient Algorithm (MASGA) whose implementation is independent of the structure of the target measure and which achieves performance on par with Monte Carlo estimators that have access to unbiased samples from the distribution of interest. In other words, MASGA is an optimal estimator from the mean square error-computational cost perspective within the class of Monte Carlo estimators. We prove this fact rigorously for log-concave settings and verify it numerically for some examples where the log-concavity assumption is not satisfied.


翻译:虽然在计算统计、机器学习和优化方面有很多减少 SGA 差异的尝试,但通常会利用抽样分布的特定结构,要求事先了解其密度模式。因此,目前尚不清楚如何将这种算法调整到非log-colave 的设置。在本文中,我们构建了一个多指数抗反热性温度梯度(MASAGA)的最佳选择,因为其实施独立于目标测量的结构,并实现与蒙特卡洛估计者相当的绩效,该估计者可以从其密度模式的分布中获得公正样品。在其它词语中,MASGA是一个最理想的日历模型,从这个模型中可以找到一个最理想的模型。

0
下载
关闭预览

相关内容

专知会员服务
12+阅读 · 2021年10月12日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月23日
Arxiv
0+阅读 · 2021年11月21日
VIP会员
相关VIP内容
专知会员服务
12+阅读 · 2021年10月12日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员