In kernel-based approximation, the tuning of the so-called shape parameter is a fundamental step for achieving an accurate reconstruction. Recently, the popular Rippa's algorithm [14] has been extended to a more general cross validation setting. In this work, we propose a modification of such extension with the aim of further reducing the computational costs. The resulting Stochastic Extended Rippa's Algorithm (SERA) is first detailed and then tested by means of various numerical experiments, which show its efficacy and effectiveness in different approximation settings.
翻译:在以内核为基础的近似中,调整所谓的形状参数是实现准确重建的基本步骤。 最近,流行的里帕的算法[14] 已经推广到更普遍的交叉验证环境。 在这项工作中,我们提议修改这种扩展,以进一步降低计算成本。 由此产生的斯托切斯特·扩展里帕的阿尔戈里特姆(SERA)首先详细,然后通过各种数字实验进行测试,这些实验显示了它在不同近似环境中的效力和有效性。