Unsupervised domain adaptation (UDA) aims to solve the problem of knowledge transfer from labeled source domain to unlabeled target domain. Recently, many domain adaptation (DA) methods use centroid to align the local distribution of different domains, that is, to align different classes. This improves the effect of domain adaptation, but domain differences exist not only between classes, but also between samples. This work rethinks what is the alignment between different domains, and studies how to achieve the real alignment between different domains. Previous DA methods only considered one distribution feature of aligned samples, such as full distribution or local distribution. In addition to aligning the global distribution, the real domain adaptation should also align the meso distribution and the micro distribution. Therefore, this study propose a double classifier method based on high confidence label (DCP). By aligning the centroid and the distribution between centroid and sample of different classifiers, the meso and micro distribution alignment of different domains is realized. In addition, in order to reduce the chain error caused by error marking, This study propose a high confidence marking method to reduce the marking error. To verify its versatility, this study evaluates DCP on digital recognition and target recognition data sets. The results show that our method achieves state-of-the-art results on most of the current domain adaptation benchmark datasets.


翻译:不受监督的域适应(UDA) 旨在解决从标签源域向未标签目标域的知识转移问题。 最近, 许多域适应(DA) 方法使用中值来调整不同域的本地分布, 即对不同类别进行对齐。 这提高了域适应的效果, 但地区差异不仅存在于类别之间, 也存在于样本之间。 这项工作重新思考了不同域之间的什么是一致, 以及如何实现不同域之间的真正一致。 以前的 DA 方法只考虑了一致样品的一个分布特征, 如完全分布或本地分布。 除了调整全球分布外, 真实域适应(DA) 方法还应将中观分布和微分布相匹配。 因此, 本研究提出了基于高信任标签( DCP) 的双层分类方法。 通过对中观和不同分类器样本之间的分布, 实现不同域的中观和微分布的一致。 此外, 为了减少错误标记造成的链错误, 本研究还提出了一种高信任标记方法来减少标记错误。 为了校验其多功能性, 本次研究还评估了当前域域基准数据识别结果, 显示我们数字识别结果 。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月30日
Graph Analysis and Graph Pooling in the Spatial Domain
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
VIP会员
相关VIP内容
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员