Unsupervised domain adaptation (UDA) aims to solve the problem of knowledge transfer from labeled source domain to unlabeled target domain. Recently, many domain adaptation (DA) methods use centroid to align the local distribution of different domains, that is, to align different classes. This improves the effect of domain adaptation, but domain differences exist not only between classes, but also between samples. This work rethinks what is the alignment between different domains, and studies how to achieve the real alignment between different domains. Previous DA methods only considered one distribution feature of aligned samples, such as full distribution or local distribution. In addition to aligning the global distribution, the real domain adaptation should also align the meso distribution and the micro distribution. Therefore, this study propose a double classifier method based on high confidence label (DCP). By aligning the centroid and the distribution between centroid and sample of different classifiers, the meso and micro distribution alignment of different domains is realized. In addition, in order to reduce the chain error caused by error marking, This study propose a high confidence marking method to reduce the marking error. To verify its versatility, this study evaluates DCP on digital recognition and target recognition data sets. The results show that our method achieves state-of-the-art results on most of the current domain adaptation benchmark datasets.
翻译:不受监督的域适应(UDA) 旨在解决从标签源域向未标签目标域的知识转移问题。 最近, 许多域适应(DA) 方法使用中值来调整不同域的本地分布, 即对不同类别进行对齐。 这提高了域适应的效果, 但地区差异不仅存在于类别之间, 也存在于样本之间。 这项工作重新思考了不同域之间的什么是一致, 以及如何实现不同域之间的真正一致。 以前的 DA 方法只考虑了一致样品的一个分布特征, 如完全分布或本地分布。 除了调整全球分布外, 真实域适应(DA) 方法还应将中观分布和微分布相匹配。 因此, 本研究提出了基于高信任标签( DCP) 的双层分类方法。 通过对中观和不同分类器样本之间的分布, 实现不同域的中观和微分布的一致。 此外, 为了减少错误标记造成的链错误, 本研究还提出了一种高信任标记方法来减少标记错误。 为了校验其多功能性, 本次研究还评估了当前域域基准数据识别结果, 显示我们数字识别结果 。