Recently, vision transformers have shown great success in a set of human reconstruction tasks such as 2D human pose estimation (2D HPE), 3D human pose estimation (3D HPE), and human mesh reconstruction (HMR) tasks. In these tasks, feature map representations of the human structural information are often extracted first from the image by a CNN (such as HRNet), and then further processed by transformer to predict the heatmaps (encodes each joint's location into a feature map with a Gaussian distribution) for HPE or HMR. However, existing transformer architectures are not able to process these feature map inputs directly, forcing an unnatural flattening of the location-sensitive human structural information. Furthermore, much of the performance benefit in recent HPE and HMR methods has come at the cost of ever-increasing computation and memory needs. Therefore, to simultaneously address these problems, we propose FeatER, a novel transformer design that preserves the inherent structure of feature map representations when modeling attention while reducing memory and computational costs. Taking advantage of FeatER, we build an efficient network for a set of human reconstruction tasks including 2D HPE, 3D HPE, and HMR. A feature map reconstruction module is applied to improve the performance of the estimated human pose and mesh. Extensive experiments demonstrate the effectiveness of FeatER on various human pose and mesh datasets. For instance, FeatER outperforms the SOTA method MeshGraphormer by requiring 5% of Params and 16% of MACs on Human3.6M and 3DPW datasets. Code is available at https://github.com/zczcwh/FeatER.


翻译:最近,视觉变异器在一系列人类重建任务中表现出巨大成功,如2D人造面估计(2D HPE),3D人造面估计(3D HPE),以及人类网状重建(HMR)等任务。在这些任务中,人类结构信息的特征示意图往往首先由CNN(如HRNet)从图像中提取,然后由变异器进一步处理,以预测HPE或HMR的热测图(将每个联合点编码成一个配有Gaussian分布的地貌图)。然而,现有的变异器结构无法直接处理这些地貌地图输入,迫使对地点敏感的人类结构信息进行异常的平整。此外,最近HPE和HMR方法中的许多性能收益是以不断增长的计算和记忆需求为代价的。因此,为了同时解决这些问题,我们建议Feater(eterer)设计一个在模拟关注和计算成本时保存地貌图显示的固有结构结构。利用Featerer(Faterer)的优势,我们为需要重建一套人造图的网络,包括2D HPEMEMA、3MS、HPE、HPS、HPM、HPS、HPS、5Ms、HS、Fs、Fs、Fs、Fs、S、S、S、Fs、Fs、Fs、S、S、S、F、Fs、Fss、S、S、S、S、S、S、S、Fs、Fs、Fs、Fs、Fs、Slormas、Sld、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、SD、SD、SD、SD、SD、SD、SD、SD、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、S、SD、S、S、SD、S、S、SD、SD、SD、

0
下载
关闭预览

相关内容

抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员