Arikan's exciting discovery of polar codes has provided an altogether new way to efficiently achieve Shannon capacity. Given a (constant-sized) invertible matrix $M$, a family of polar codes can be associated with this matrix and its ability to approach capacity follows from the {\em polarization} of an associated $[0,1]$-bounded martingale, namely its convergence in the limit to either $0$ or $1$. Arikan showed polarization of the martingale associated with the matrix $G_2 = \left(\begin{matrix} 1& 0 1& 1\end{matrix}\right)$ to get capacity achieving codes. His analysis was later extended to all matrices $M$ that satisfy an obvious necessary condition for polarization. While Arikan's theorem does not guarantee that the codes achieve capacity at small blocklengths, it turns out that a "strong" analysis of the polarization of the underlying martingale would lead to such constructions. Indeed for the martingale associated with $G_2$ such a strong polarization was shown in two independent works ([Guruswami and Xia, IEEE IT '15] and [Hassani et al., IEEE IT '14]), resolving a major theoretical challenge of the efficient attainment of Shannon capacity. In this work we extend the result above to cover martingales associated with all matrices that satisfy the necessary condition for (weak) polarization. In addition to being vastly more general, our proofs of strong polarization are also simpler and modular. Specifically, our result shows strong polarization over all prime fields and leads to efficient capacity-achieving codes for arbitrary symmetric memoryless channels. We show how to use our analyses to achieve exponentially small error probabilities at lengths inverse polynomial in the gap to capacity. Indeed we show that we can essentially match any error probability with lengths that are only inverse polynomial in the gap to capacity.


翻译:Arikan令人兴奋地发现了极地代码,这为高效率地实现香农能力提供了全新的新途径。鉴于一个(固定大小)不可逆的基质 $M$,一个极地代码家族可以与这个基质相联系,其接近能力来自相关的 $80,1美元绑定的马丁格勒, 即它以0.0美元或$美元为限。 Arikan展示了与基质 $_2 = left (\ begin{matrix} 1 & 0 1 and 1 end{matrix}right) 相联的马丁基质, 以获得更深的基质的基质。 Arikank's 理论不能保证该基质在小块内能达到最小的基质, 也就是说, 对基质马丁格的极分化只能导致这样的构造。事实上, 与基质的基质和基质的基质的基质和基质的基质的基质的基质的基质, 在两个独立作品([Grusirialwami 和Xial ) 分析中, 也显示我们最精度的基的基的基的基的底的底的底的底的底的基质的底的基质的基质的基质的底的底的底的底的底的基质的基质的基质的底的根基质, 显示我们的底的基质的底的底的底的底的底的基体积积积积积积积,我们的根,我们的底的底的底的底的底的底的底的底的根基的底的底的底的根到我们的根基的根基的根基的根基的底的底的底的根基的根基的根基的底的底的根的根的根的根到我们的根。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
29+阅读 · 2018年4月6日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员