DeepOnets have recently been proposed as a framework for learning nonlinear operators mapping between infinite dimensional Banach spaces. We analyze DeepOnets and prove estimates on the resulting approximation and generalization errors. In particular, we extend the universal approximation property of DeepOnets to include measurable mappings in non-compact spaces. By a decomposition of the error into encoding, approximation and reconstruction errors, we prove both lower and upper bounds on the total error, relating it to the spectral decay properties of the covariance operators, associated with the underlying measures. We derive almost optimal error bounds with very general affine reconstructors and with random sensor locations as well as bounds on the generalization error, using covering number arguments. We illustrate our general framework with four prototypical examples of nonlinear operators, namely those arising in a nonlinear forced ODE, an elliptic PDE with variable coefficients and nonlinear parabolic and hyperbolic PDEs. In all these examples, we prove that DeepOnets break the curse of dimensionality, thus demonstrating the efficient approximation of infinite-dimensional operators with this machine learning framework.


翻译:深一号最近被提议为学习无线操作员在无限的波纳赫空间间绘制非线性操作员的框架。 我们分析深一号, 并证明对由此产生的近似和概括误差的估计。 特别是, 我们扩展了DeepOints的通用近似属性, 以包括非对应空间的可测量绘图。 通过将错误分解成编码、 近似和重整错误, 我们证明在总误差上下下下方和上方的界限, 与常态操作员的光谱衰减特性有关, 与基本测量相联。 我们用非常笼统的直系重建器和随机传感器位置得出几乎最佳的误差界限, 以及一般误差的界限, 包括数字参数。 我们用四个非线性操作员的原型示例展示了我们的总体框架, 即非线性硬化的 ODE, 一个有可变系数的非线性PDE, 以及非线性paropoli和超度的PDE 。 在所有这些例子中, 我们证明DeepOIts打破了维的诅咒, 从而展示了无线性操作操作员与机器学习框架的有效近距离操作员的近似。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐免费书|MIT出版《Reinforcement Learning: An Introduction》
全球人工智能
3+阅读 · 2017年12月1日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐免费书|MIT出版《Reinforcement Learning: An Introduction》
全球人工智能
3+阅读 · 2017年12月1日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员