We show strong uniform convergence of monotone P1 finite element methods to the viscosity solution of isotropic parabolic Hamilton-Jacobi-Bellman equations with mixed boundary conditions on unstructured meshes and for possibly degenerate diffusions. Boundary operators can generally be discontinuous across face-boundaries and type changes. Robin-type boundary conditions are discretised via a lower Dini derivative. In time the Bellman equation is approximated through IMEX schemes. Existence and uniqueness of numerical solutions follows through Howard's algorithm. Keywords: Finite element method, Hamilton-Jacobi-Bellman equation, Mixed boundary conditions, Fully nonlinear equation, Viscosity solution
翻译:单色P1有限元素方法与单色抛物环流汉密尔顿-Jacobi-Bellman等方程式的粘度溶解方法高度一致,这些方程式在未结构化的梅壳上的混合边界条件和可能的退化扩散条件中具有混杂的边界条件。 边界操作者一般可以在面境和类型变化之间不连续。 罗宾型边界条件通过较低的Dini衍生物分解。 此时,Bellman方程式通过IMEX方案相近。 数字方程式的存在和独特性通过霍华德的算法来跟踪。 关键词: 精度元素法、 Hamilton- Jacobi-Bellman等式、 混合边界条件、 完全非线性方程式、 维scolity 解决方案。