Bayesian quadrature (BQ) is a sample-efficient probabilistic numerical method to solve integrals of expensive-to-evaluate black-box functions, yet so far,active BQ learning schemes focus merely on the integrand itself as information source, and do not allow for information transfer from cheaper, related functions. Here, we set the scene for active learning in BQ when multiple related information sources of variable cost (in input and source) are accessible. This setting arises for example when evaluating the integrand requires a complex simulation to be run that can be approximated by simulating at lower levels of sophistication and at lesser expense. We construct meaningful cost-sensitive multi-source acquisition rates as an extension to common utility functions from vanilla BQ (VBQ),and discuss pitfalls that arise from blindly generalizing. Furthermore, we show that the VBQ acquisition policy is a corner-case of all considered cost-sensitive acquisition schemes, which collapse onto one single de-generate policy in the case of one source and constant cost. In proof-of-concept experiments we scrutinize the behavior of our generalized acquisition functions. On an epidemiological model, we demonstrate that active multi-source BQ (AMS-BQ) allocates budget more efficiently than VBQ for learning the integral to a good accuracy.
翻译:Bayesian 二次曲线( BQ) 是一种抽样高效的概率性数字方法,用于解决昂贵的黑盒功能的组合,但迄今为止,积极的 BQ 学习计划仅仅侧重于作为信息源的英格朗本身,不允许从更廉价的相关功能中进行信息转移。这里,我们为BQ 设置了积极学习的场所,因为多相关的信息源具有可变成本(投入和来源)的可变(投入和来源)的可选性。例如,当评价英格朗需要一种复杂的模拟来运行时,这种模拟可以通过较低精密度和较低成本的模拟进行近似。我们从香草BQ(VBQ)建立有意义的成本敏感多源获取率作为通用功能的延伸,并讨论盲目概括产生的陷阱。此外,我们证明VBQ 收购政策是所有考虑成本敏感的购置计划的一个角落,在一个来源和持续成本的情况下,该政策崩溃为单一的脱基因政策。在测试实验中,我们仔细检查我们普遍获取功能的行为,从香草 BQ(VBQ) 来更准确地分配一个成功的BQ。