To assess the vulnerability of deep learning in the physical world, recent works introduce adversarial patches and apply them on different tasks. In this paper, we propose another kind of adversarial patch: the Meaningful Adversarial Sticker, a physically feasible and stealthy attack method by using real stickers existing in our life. Unlike the previous adversarial patches by designing perturbations, our method manipulates the sticker's pasting position and rotation angle on the objects to perform physical attacks. Because the position and rotation angle are less affected by the printing loss and color distortion, adversarial stickers can keep good attacking performance in the physical world. Besides, to make adversarial stickers more practical in real scenes, we conduct attacks in the black-box setting with the limited information rather than the white-box setting with all the details of threat models. To effectively solve for the sticker's parameters, we design the Region based Heuristic Differential Evolution Algorithm, which utilizes the new-found regional aggregation of effective solutions and the adaptive adjustment strategy of the evaluation criteria. Our method is comprehensively verified in the face recognition and then extended to the image retrieval and traffic sign recognition. Extensive experiments show the proposed method is effective and efficient in complex physical conditions and has a good generalization for different tasks.
翻译:为了评估物理界深层学习的脆弱性,最近的工作引入了对抗性补丁,并将其应用于不同的任务。 在本文中,我们提出另一种对抗性补丁:有意义的反versarial粘贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴贴写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写上写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写写