In this paper, we propose BeamSense, a completely novel approach to implement standard-compliant Wi-Fi sensing applications. Wi-Fi sensing enables game-changing applications in remote healthcare, home entertainment, and home surveillance, among others. However, existing work leverages the manual extraction of channel state information (CSI) from Wi-Fi chips to classify activities, which is not supported by the Wi-Fi standard and hence requires the usage of specialized equipment. On the contrary, BeamSense leverages the standard-compliant beamforming feedback information (BFI) to characterize the propagation environment. Conversely from CSI, the BFI (i) can be easily recorded without any firmware modification, and (ii) captures the multiple channels between the access point and the stations, thus providing much better sensitivity. BeamSense includes a novel cross-domain few-shot learning (FSL) algorithm to handle unseen environments and subjects with few additional data points. We evaluate BeamSense through an extensive data collection campaign with three subjects performing twenty different activities in three different environments. We show that our BFI-based approach achieves about 10% more accuracy when compared to CSI-based prior work, while our FSL strategy improves accuracy by up to 30% and 80% when compared with state-of-the-art cross-domain algorithms.
翻译:在本文中,我们提出了一种全新的方法来实现标准兼容的Wi-Fi传感应用,即BeamSense。 Wi-Fi传感在远程医疗、家庭娱乐和家庭监控等领域具有革命性的应用。然而,现有的工作利用从Wi-Fi芯片中手动提取信道状态信息(CSI)来分类活动,这不受Wi-Fi标准支持,因此需要使用专业设备。相反,BeamSense利用标准兼容的波束成形反馈信息(BFI)来特征化传播环境。与CSI相反,BFI(i)可以轻松记录而不需要任何固件修改,而且(ii)捕获访问点和站点之间的多个通道,因此提供了更好的灵敏度。BeamSense包括一种新颖的跨领域少样本学习(FSL)算法,以处理在少量额外数据点情况下未见环境和主题的情况。我们通过在三个不同环境下进行二十种不同活动的三个受试者的广泛数据收集活动来评估BeamSense。我们表明,与CSI为基础的之前的工作相比,我们基于BFI的方法的准确性提高了约10%,而我们的FSL策略在与最先进的跨领域算法相比时提高了30%和80%的准确性。