A common approach to model memristive systems is to include empirical window functions to describe edge effects and non-linearities in the change of the memristance. We demonstrate that under quite general conditions, each window function can be associated with a sigmoidal curve relating the normalised time-dependent memristance to the time integral of the input. Conversely, this explicit relation allows us to derive window functions suitable for the mesoscopic modelling of memristive systems from a variety of well-known sigmoidals. Such sigmoidal curves are defined in terms of measured variables and can thus be extracted from input and output signals of a device and then transformed to its corresponding window. We also introduce a new generalised window function that allows the flexible modelling of asymmetric edge effects in a simple manner.
翻译:模拟内存系统的常见做法是,将经验窗口功能包括进来,以描述介质变化的边缘效应和非线性。我们证明,在相当一般的条件下,每个窗口功能都可以与将正常时间依赖的介质与输入的内含时间联系起来的悬浮曲线联系起来。相反,这种明确的关系使我们能够从各种众所周知的悬浮上生成适合内存系统建模的窗口功能。这种悬浮曲线是用测量变量来定义的,因此可以从一个装置的输入和输出信号中提取,然后转换成相应的窗口。我们还引入一种新的一般窗口功能,以便以简单的方式对不对称边缘效应进行灵活的建模。