In this paper, we investigate the privacy-utility trade-off (PUT) problem, which considers the minimal privacy loss at a fixed expense of utility. Several different kinds of privacy in the PUT problem are studied, including differential privacy, approximate differential privacy, maximal information, maximal leakage, Renyi differential privacy, Sibson mutual information and mutual information. The average Hamming distance is used to measure the distortion caused by the privacy mechanism. We consider two scenarios: global privacy and local privacy. In the framework of global privacy framework, the privacy-distortion function is upper-bounded by the privacy loss of a special mechanism, and lower-bounded by the optimal privacy loss with any possible prior input distribution. In the framework of local privacy, we generalize a coloring method for the PUT problem.
翻译:在本文中,我们调查了私隐-公用权交易(PUT)问题(PUT),这一问题以固定的公用权成本为代价考虑最低隐私损失(PUT)问题。研究了PUT问题中的几种不同类型的隐私,包括差异隐私、近似差异隐私、最大信息、最大渗漏、Renyi差异隐私、Sibson相互信息和相互信息。平均仓储距离用来衡量隐私机制造成的扭曲。我们考虑了两种情景:全球隐私和地方隐私。在全球隐私框架内,隐私扭曲功能被特殊机制的隐私损失所压倒,而最佳隐私损失则以任何可能的先前投入分配为下限。在本地隐私框架内,我们将PUT问题的一种彩色化方法推广。