Instance segmentation of overlapping objects in biomedical images remains a largely unsolved problem. We take up this challenge and present MultiStar, an extension to the popular instance segmentation method StarDist. The key novelty of our method is that we identify pixels at which objects overlap and use this information to improve proposal sampling and to avoid suppressing proposals of truly overlapping objects. This allows us to apply the ideas of StarDist to images with overlapping objects, while incurring only a small overhead compared to the established method. MultiStar shows promising results on two datasets and has the advantage of using a simple and easy to train network architecture.
翻译:生物医学图像中重叠物体的发生分解基本上仍然是一个尚未解决的问题。 我们迎接了这一挑战, 并提出了“ 多星”(MultiStar), 这是广受欢迎的实例分解方法的延伸。 我们方法的关键新颖之处是, 我们确定物体重叠的像素, 并使用这种信息来改进建议抽样, 避免压制真正重叠物体的建议。 这使我们能够将“ 星光” 的概念应用到与重叠物体相重叠的图像上, 而与既定方法相比,只产生很小的间接成本。 多星(MultiStar) 在两个数据集上展示了很有希望的结果, 并具有使用简单易用的网络架构培训功能的优势 。