Decision trees provide a rich family of highly non-linear but efficient models, due to which they continue to be the go-to family of predictive models by practitioners across domains. But learning trees is a challenging problem due to their highly discrete and non-differentiable decision boundaries. The state-of-the-art techniques use greedy methods that exploit the discrete tree structure but are tailored to specific problem settings (say, categorical vs real-valued predictions). In this work, we propose a reformulation of the tree learning problem that provides better conditioned gradients, and leverages successful deep network learning techniques like overparameterization and straight-through estimators. Our reformulation admits an efficient and {\em accurate} gradient-based algorithm that allows us to deploy our solution in disparate tree learning settings like supervised batch learning and online bandit feedback based learning. Using extensive validation on standard benchmarks, we observe that in the supervised learning setting, our general method is competitive to, and in some cases more accurate than, existing methods that are designed {\em specifically} for the supervised settings. In contrast, for bandit settings, where most of the existing techniques are not applicable, our models are still accurate and significantly outperform the applicable state-of-the-art methods.


翻译:决策树提供了丰富多彩的、高度非线性但效率高的模式,由于这些模式,他们仍然是跨领域实践者预测模型的组合。但是,学习树木是一个具有挑战性的问题,因为其决定界限高度离散和无差别。最先进的技术使用贪婪的方法,利用离散的树结构,但适应特定的问题环境(如,绝对或实际价值预测)。在这项工作中,我们提议重新研究树木学习问题,提供更好的条件梯度,利用成功的深层次网络学习技术,如过度参数化和直通的估测。我们的重新拟订承认一种高效和精确的梯度算法,使我们能够在不同的树学习环境中部署我们的解决办法,如监督的批量学习和在线带状反馈,以学习为基础。我们发现,在监督的学习环境中,我们的一般方法比专门设计的现有方法更具有竞争力,在某些情况下更准确。相比之下,对于受监督的环境而言,我们的一般方法比现有方法更精确,大多数现有方法都不适用。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Adaptive Variants of Optimal Feedback Policies
Arxiv
0+阅读 · 2021年4月6日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员