Traditional media coding schemes typically encode image/video into a semantic-unknown binary stream, which fails to directly support downstream intelligent tasks at the bitstream level. Semantically Structured Image Coding (SSIC) framework makes the first attempt to enable decoding-free or partial-decoding image intelligent task analysis via a Semantically Structured Bitstream (SSB). However, the SSIC only considers image coding and its generated SSB only contains the static object information. In this paper, we extend the idea of semantically structured coding from video coding perspective and propose an advanced Semantically Structured Video Coding (SSVC) framework to support heterogeneous intelligent applications. Video signals contain more rich dynamic motion information and exist more redundancy due to the similarity between adjacent frames. Thus, we present a reformulation of semantically structured bitstream (SSB) in SSVC which contains both static object characteristics and dynamic motion clues. Specifically, we introduce optical flow to encode continuous motion information and reduce cross-frame redundancy via a predictive coding architecture, then the optical flow and residual information are reorganized into SSB, which enables the proposed SSVC could better adaptively support video-based downstream intelligent applications. Extensive experiments demonstrate that the proposed SSVC framework could directly support multiple intelligent tasks just depending on a partially decoded bitstream. This avoids the full bitstream decompression and thus significantly saves bitrate/bandwidth consumption for intelligent analytics. We verify this point on the tasks of image object detection, pose estimation, video action recognition, video object segmentation, etc.
翻译:传统的媒体编码方案通常将图像/视频编码成一个语义化的未知二进制流,无法直接支持下游的比特流智能任务。 光学结构化的图像编码框架首次尝试通过一个Smantically结构化的比特流(SSSB)进行解码无或部分解码的图像智能任务分析。 然而, 标准行业分类只考虑图像编码及其生成的 SSB 只包含静态对象信息。 在本文中, 我们从视频编码的角度扩展了语义结构化的图像编码概念, 并提议了一个先进的Smantical结构化视频编码框架, 以支持多种智能应用。 视频信号包含更丰富的动态动态信息, 并且由于相邻框架的相似性而存在更多的冗余性。 因此, 我们在SSVC 中提出了包含静态对象特性和动态运动线索的静态结构化流。 具体地, 我们引入光学流, 通过一个预测性编码架构, 减少跨结构化的图像结构化的图像变校程(SSV) 的图像流和残余值校程化校正校程化校正校正校程(SSC) 校程校正校正) 的校正校正校正校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校方的校方的校正的校正的校方的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正