Despite the efficient market hypothesis, many studies suggest the existence of inefficiencies in the stock market, leading to the development of techniques to gain above-market returns, known as alpha. Systematic trading has undergone significant advances in recent decades, with deep learning emerging as a powerful tool for analyzing and predicting market behavior. In this paper, we propose a model inspired by professional traders that look at stock prices of the previous 600 days and predicts whether the stock price rises or falls by a certain percentage within the next D days. Our model, called DeepStock, uses Resnet's skip connections and logits to increase the probability of a model in a trading scheme. We test our model on both the Korean and US stock markets and achieve a profit of N\% on Korea market, which is M\% above the market return, and profit of A\% on US market, which is B\% above the market return.
翻译:暂无翻译