Heterogeneous radio access networks require efficient traffic steering methods to reach near-optimal results in order to maximize network capacity. This paper aims to propose a novel traffic steering algorithm for usage in HetNets, which utilizes a reinforcement learning algorithm in combination with an artificial neural network to maximize total user satisfaction in the simulated cellular network. The novel algorithm was compared with two reference algorithms using network simulation results. The results prove that the novel algorithm provides noticeably better efficiency in comparison with reference algorithms, especially in terms of the number of served users with limited frequency resources of the radio access network.
翻译:不同式的无线电接入网络需要高效的交通指导方法,以达到接近最佳的结果,从而最大限度地发挥网络能力。本文旨在为HetNets的用户提出一个新的交通指导算法,该算法与人工神经网络结合使用强化学习算法,以最大限度地提高模拟蜂窝网络用户的完全满意度。新算法与使用网络模拟结果的两种参考算法进行了比较。结果证明,与参考算法相比,新算法提供了明显更好的效率,特别是在无线电接入网络的频率资源有限的服务用户数量方面。