Deep classifiers have achieved great success in visual recognition. However, real-world data is long-tailed by nature, leading to the mismatch between training and testing distributions. In this paper, we show that Softmax function, though used in most classification tasks, gives a biased gradient estimation under the long-tailed setup. This paper presents Balanced Softmax, an elegant unbiased extension of Softmax, to accommodate the label distribution shift between training and testing. Theoretically, we derive the generalization bound for multiclass Softmax regression and show our loss minimizes the bound. In addition, we introduce Balanced Meta-Softmax, applying a complementary Meta Sampler to estimate the optimal class sample rate and further improve long-tailed learning. In our experiments, we demonstrate that Balanced Meta-Softmax outperforms state-of-the-art long-tailed classification solutions on both visual recognition and instance segmentation tasks.


翻译:深分类者在视觉识别方面取得了巨大成功。 然而, 真实世界数据是自然界的长尾目, 导致培训和测试分布不匹配。 在本文中, 我们显示软形函数虽然在大多数分类任务中使用了偏差梯度估计, 在长尾结构下给出了偏差梯度估计。 本文展示了平衡软形( Softmax 的优雅公正延伸), 以适应培训和测试之间的标签分布变化。 理论上, 我们从多级软体回归中得出一般化, 并显示我们的损失最小化了约束。 此外, 我们引入了平衡元体- 软体模型, 使用一个补充的元体样板来估计最佳类样本率, 并进一步改进长尾学习 。 在我们的实验中, 我们展示了平衡的元体- 软体分解法在视觉识别和实例分解任务上都高于高级长尾分类方法的状态。

1
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Equalization Loss for Long-Tailed Object Recognition
Arxiv
5+阅读 · 2020年4月14日
Arxiv
4+阅读 · 2020年3月27日
Arxiv
10+阅读 · 2018年3月10日
VIP会员
相关资讯
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
相关论文
Top
微信扫码咨询专知VIP会员