It is critical that the models pay attention not only to accuracy but also to the certainty of prediction. Uncertain predictions of deep models caused by noisy data raise significant concerns in trustworthy AI areas. To explore and handle uncertainty due to intrinsic data noise, we propose a novel method called ALUM to simultaneously handle the model uncertainty and data uncertainty in a unified scheme. Rather than solely modeling data uncertainty in the ultimate layer of a deep model based on randomly selected training data, we propose to explore mined adversarial triplets to facilitate data uncertainty modeling and non-parametric uncertainty estimations to compensate for the insufficiently trained latent model layers. Thus, the critical data uncertainty and model uncertainty caused by noisy data can be readily quantified for improving model robustness. Our proposed ALUM is model-agnostic which can be easily implemented into any existing deep model with little extra computation overhead. Extensive experiments on various noisy learning tasks validate the superior robustness and generalization ability of our method. The code is released at https://github.com/wwzjer/ALUM.
翻译:在深度学习模型中,关注预测的准确性和不确定性是至关重要的。深度模型对由于噪声导致的不确定预测造成了值得信任的AI领域的显著担忧。为了探索和处理由固有数据噪声引起的不确定性,我们提出了一种新的方法——ALUM,以统一的方案同时处理模型不确定性和数据不确定性。我们提出了探索挖掘的对抗三元组以促进数据不确定性建模和非参数不确定性估计来补偿不够训练的潜在模型层,而不是仅在深度模型的最终层中基于随机选取的训练数据模拟数据不确定性,因此,由于噪声数据引起的关键数据不确定性和模型不确定性可以轻松地被量化,以提高模型的鲁棒性。我们提出的ALUM是模型不可知的,可以很容易地在任何现有的深度模型中实现,带有很少的额外计算开销。在各种噪声学习任务上进行的大量实验证明了我们方法的优越鲁棒性和泛化能力。代码在https://github.com/wwzjer/ALUM 上发布。