Optimizing user engagement is a key goal for modern recommendation systems, but blindly pushing users towards increased consumption risks burn-out, churn, or even addictive habits. To promote digital well-being, most platforms now offer a service that periodically prompts users to take a break. These, however, must be set up manually, and so may be suboptimal for both users and the system. In this paper, we propose a framework for optimizing long-term engagement by learning individualized breaking policies. Using Lotka-Volterra dynamics, we model users as acting based on two balancing latent states: drive, and interest -- which must be conserved. We then give an efficient learning algorithm, provide theoretical guarantees, and empirically evaluate its performance on semi-synthetic data.
翻译:优化用户参与是现代建议系统的一个关键目标,但盲目地将用户推向消费风险增加的燃烧、发热甚至上瘾习惯。为了促进数字福祉,大多数平台现在都提供一种服务,定期促使用户休息。然而,这些必须手工设置,对用户和系统来说可能都不够理想。在本文件中,我们提出了一个框架,通过学习个性化断裂政策优化长期参与。我们利用Lotka-Volterra动态,将用户模拟为基于两个平衡的潜在状态:驱动和兴趣(必须加以保护)采取行动。然后我们给出一个高效的学习算法,提供理论保障,并用经验评估其在半合成数据上的绩效。