项目名称: 拟南芥组蛋白H3K4去甲基化酶在植物逆境胁迫应答过程中的功能研究
项目编号: No.31500982
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 生物科学
项目作者: 申远
作者单位: 新乡医学院
项目金额: 19万元
中文摘要: 土壤盐碱化和全球气候变暖是世界农业生产最主要的环境限制因子,因此研究植物抗高盐和高温胁迫的分子机制对提高作物产量具有重要的意义。表观遗传修饰在植物对外界环境胁迫的应答中起到关键作用,如组蛋白甲基化转移酶ATX1通过催化H3K4甲基化参与植物对干旱的响应,但组蛋白去甲基化酶(JmjC)在植物胁迫应答中的作用还不清楚。我们之前的工作发现,过表达JMJ15(H3K4me3去甲基化酶)能增强植物抗盐性,jmj15突变体对盐胁迫更加敏感,暗示JmjC参与了植物抗盐胁迫,但其具体的分子机理还有待阐明。本研究拟对植物进行盐胁迫和温度胁迫处理,利用qPCR、ChIP等方法研究H3K4me3在胁迫诱导和胁迫记忆过程的动态变化,以及H3K4me3去甲基化酶(JMJ14-18)在调控胁迫响应基因表达的功能和作用机制,从而阐明组蛋白修饰在植物胁迫过程中发挥的作用,为植物基因调控和作物抗逆的进一步研究提供理论依据。
中文关键词: 拟南芥;H3K4me3;组蛋白去甲基化酶;逆境胁迫;基因表达调控
英文摘要: Soil salinization and global warming has identified to be the main imminent environmental factors which severely limiting the world's agricultural production, therefore it is important to realize the molecular mechanism of plant tolerance to high salt and high temperature stress. Epigenetic modification in plants plays key roles in response to environmental stress. Previous studies showed that histone methyltransferase ATX1 is involved in plant response to drought by catalyzing H3K4 methylation. However, the role of histone demethylase (JmjC) in plant stress response is unclear. Our previous work found that, over-expression plant of JMJ15 (a H3K4me3 demethylase) could enhance the salt resistance, whereas the jmj15 knock-down mutant is more sensitive to salt stress. These preliminary data suggest that JmjC is involved in plant resistance to salt stress, but its molecular mechanism remains to be elucidated. Using qPCR and ChIP technologies, this project indtends to study the dynamic changes of H3K4me3 in the plant response to salt and temperature stress, and in addition, to research the putative roles of H3K4me3 demethylase (JMJ14-18) in regulating stress responsive genes during and after stress treatment, thus clarify the mechanism of histone modifications in plant response to environmental stress, and provide a theoretical basis for further study in the regulation of plant gene expression and crop resistance.
英文关键词: Arabidopsis;H3K4me3;histone demethylase;stress;gene expression regualtion