A new two-dimensional model for blood flows in arteries with arbitrary cross sections is derived. The model consists of a system of balance laws for conservation of mass and balance of momentum in the axial and angular directions. The equations are derived by applying asymptotic analysis to the incompressible Navier-Stokes equations in narrow, large vessels and integrating in the radial direction in each cross section. The main properties of the system are discussed and a positivity-preserving well-balanced central-upwind scheme is presented. The merits of the scheme will be tested in a variety of scenarios. In particular, numerical results of simulations using an idealized aorta model are shown. We analyze the time evolution of the blood flow under different initial conditions such as perturbations to steady states consisting of a bulging in the vessel's wall. We consider different situations given by distinct variations in the vessel's elasticity.


翻译:该模型由一套平衡法体系组成,用于保护质量,平衡轴向和角方向的势头。这些方程式是通过对狭窄、大型船只的压抑性纳维埃-斯托克斯方程式进行无症状分析,并在每一横截面的射线方向进行整合而得出的。对该系统的主要特性进行了讨论,并提出了一种相对性 -- -- 保留良好平衡的中上风方案。该方法的优点将在各种情景中进行测试。特别是,展示了使用理想化动脉模型进行模拟的数值结果。我们分析了血液流动在不同初始条件下的时间演变,例如,在轮廓的扰动到稳定状态时,形成船只壁上的挤动。我们考虑了不同情况,因为船只弹性的变化不同。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Tensor Flow、Caffe、Torch共同之处:敞开的漏洞!
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年10月13日
VIP会员
相关VIP内容
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Tensor Flow、Caffe、Torch共同之处:敞开的漏洞!
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员